TERRAPIN WORKS Intro to Sensor Interfacing

Students please sign in for the TW Workshop!

https://go.umd.edu/TWSP25

Interfacing with Sensors

Please sign in!

TERRAPIN WERKS


^ENES100 Sign-in Only!

What do sensors do?

Convert physical attributes into electrical signals.

Can convert

- Distance
- Temperature
- Humidity
- And much more

What ARE they?

Often use materials whose electrical properties change a lot under different physical conditions.

Piezoelectric Ceramic

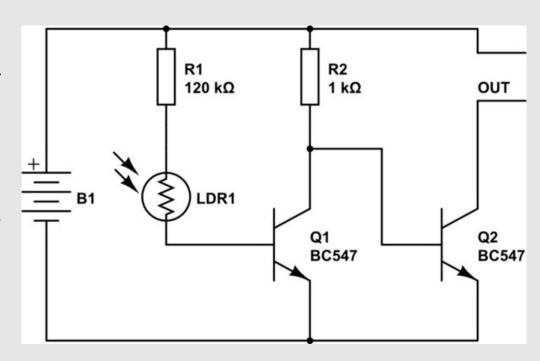
Voltage changes under **physical strain** (eg. sound waves!)

Photoresistive PbS

Resistance changes with light exposure

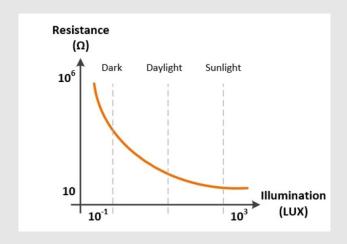
Breakout Boards

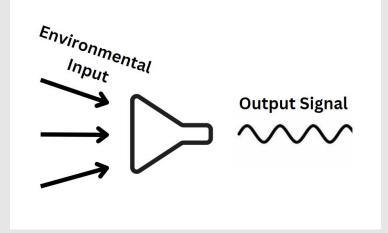
- Sensors are small and delicate
- Often require supporting components
- Breakout boards helps solve these issues



Breakout Boards

- Breakout boards host a circuit to support a sensor
- Gives sensor power
- Takes sensor output and turns it into a signal that's easy for an Arduino to read



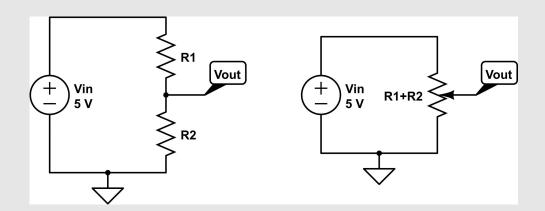

Analog Sensors

- Real values exist as a continuous range. Anything in this continuous range is analog.
- Analog sensor convert physical analog values into analog electrical values with an (ideally linear) transfer curve.

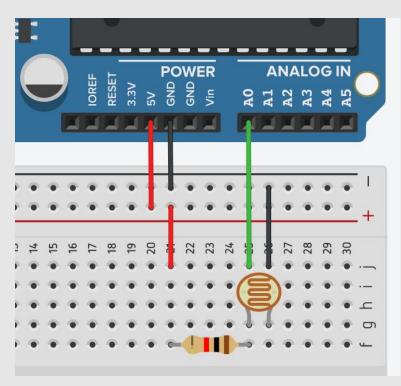
$$E = kS$$

Analog Sensors

- Analog sensors are typically 2 pin.
- "Sensed" parameter varies the resistance across the device's pins.
- Voltage dividers are used to measure these changes in resistance!



Dividing Voltages


Many sensors use **voltage dividers** to generate signals. These use the **ratio** between two resistances to get a fraction of a supplied voltage.

$$V_{out} = V_{in} \cdot \frac{R_2}{R_1 + R_2}$$

Project 1 - Photoresistor

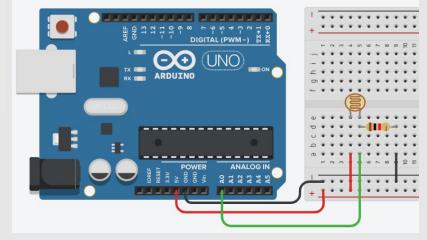
- Photoresistors change resistance under different light intensities
- Use photoresistor with a normal resistor in a voltage divider
- Analog pin on Arduino measures divider output

Project 1 - Photoresistor

```
1 #define CALIBRATION 0.66
  int photo pin = A0, adc range;
5 void setup() {
    Serial.begin (9600);
    pinMode(photo pin, INPUT);
    adc range = round(1024*CALIBRATION);
  void loop()
    int raw val = analogRead(photo pin);
    int percent = map(raw val, 0, adc range, 0, 100);
    Serial.print(percent);
    Serial.println("% brightness");
    delay(10);
17
```

```
Serial Monitor

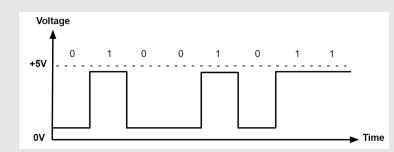
70% brightness


70% brightness

70% brightness

70% brightness

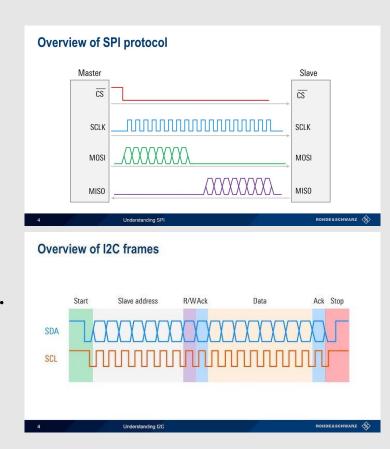
70% brightness


70% brightness
```


Digital Sensors

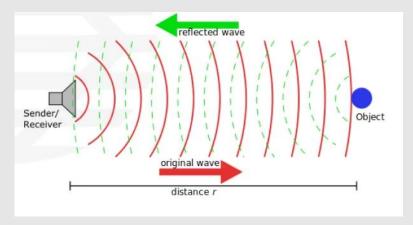
- Digital values are boolean/binary meaning they are either true or false, 1 or 0, on or off.
- Computers/Controllers think in digital values by mapping binary strings to decimal numbers
- Many sensors convert from analog to digital on the breakout board to streamline communication

Decimal	Binary	
0	0	
1	1	
2	10	
3	11	
4	100	
5	101	
6	110	
7	111	
8	1000	
9	1001	


Decimal	Binary	
10	1010	
11	1011	
12	1100	
13	1101	
14	1110	
15	1111	
16	10000	
17	10001	
18	10010	
19	10011	

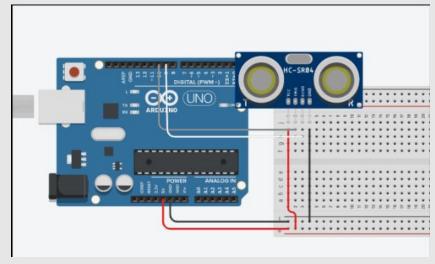
6

Digital Sensors


- Digital sensors use digital values to communicate their data.
- Sensors use predefined patterns to communicate specific information.
- More complicated sensors have predefined structures of digital values.
- These structures are called communication protocols and allow for more complicated data to be sent.

Project 2 - Ultrasonic Distance Sensor

- Ultrasonic sensors uses sound waves to measure distance
- Send a trigger pulse and then watching for a return
- Ultrasonic sensors have a conical viewing angle due to sound dispersing



Like echolocation!

Project 2 - Ultrasonic Distance sensor

```
int triggerPin = 10;
   int echoPin = 9;
   void setup()
     Serial.begin(9600);
     pinMode(triggerPin, OUTPUT);
     pinMode(echoPin, INPUT);
10
   void loop()
     delay(100);
     Serial.println(readDistance());
15
    long readDistance()
19
     digitalWrite(triggerPin, LOW);
     delay(2);
     digitalWrite(triggerPin, HIGH);
     delay(10);
     digitalWrite(triggerPin, LOW);
     return 0.01723*pulseIn(echoPin, HIGH);
25
26
```


Project 3 - Choose your own

- In tinkercad switch to all components and scroll to the input section
- Choose a sensor from that section to implement
- Use the info (?) tab to learn how to use it

Photoresistor

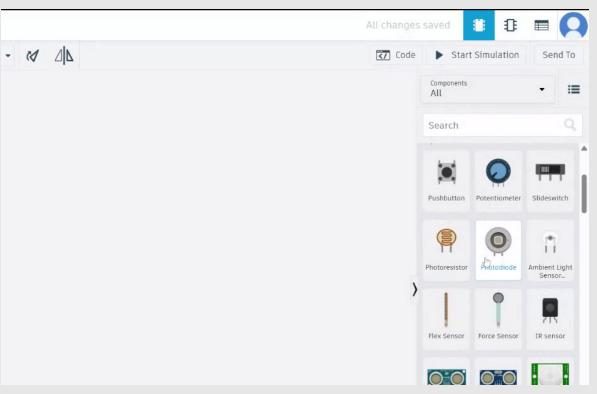
Photodiode

Ambient Light Sensor...

Flex Sensor

IR sensor

Ultrasonic Distance...


Ultrasonic Distance...

PIR Sensor

Finding Part Info

To learn about all the cool stuff at Terrapin Works, Or need tech help with your project, feel free to Stop by the

Maker Mondays

Where?: Rapid Prototyping Center (IDEA 1102) When? Mondays! (ofc!) 5pm - 7pm

0

Come visit the IES!

1115 AJC Open Lab 2:00- 7:00 PM Weekdays

Please give us your feedback!

https://tinyurl.com/6eayw8r8

