

https://go.umd.edu/TWSP25

Students please sign in for the TW Workshop!

While you are waiting, please go to tinkercad.com and make an account!

TERRAPIN W

Intro: Motors and Servos

Fundamentals

What is a motor?

Motors convert **electrical** energy to rotational **mechanical** energy. There are two main types:

- **DC motors** for fast, uncontrolled motion
- Servo motors for slow, controlled motion

Permanent magnets are

made of rare minerals that have a built-in magnetic field.

Electromagnets (aka temporary

magnets) generate magnetic fields by putting electric current through a coil of wire. **They have an off switch!**

Magnetic Fields

Represent **looping lines of force** through space that some objects "see":

- Magnets (permanent **OR** temporary) can interact with other magnetic fields
- Certain materials like iron

Magnets want to align their fields with each other!

Magnets in Motors

Electromagnets built into the central **rotor** get power through the **brushes**. Forces between these and permanent magnets (**stator**) arranged around the rotor spin the shaft!

DC Motors

The two terminals connect **directly** to the brushes.

Behavior is controlled by voltage across the terminals:

- **Polarity** controls direction of spin
- Magnitude controls speed and torque

DC Motor Terminology

RPM: Motor speed in revolutions per minute.

Torque: Force behind the rotation.

Stall Torque: Maximum force output of the motor.

Speed vs. Torque is Linear

Characteristics of Motors

RPM: Motor speed decrease with an increase in torque.

Current: Current increase linearly with torque.

Efficiency: Varies per motor make sure to check the manufacturer's manual for details

DC Motor Controls

Voltage Control

Motor output is proportional to voltage

Pros : Simple and intuitive

Cons : High power consumption requires dedicated motor controllers to safely adjust voltage

Pulse Width Modulation (PWM)

PWM allows digital pins to *effectively* output voltages between **HIGH** and **LOW** by rapidly toggling the pin on and off at a set **duty cycle**.

Duty Cycle is the fraction of time for which the pin is on.

$$D = \frac{T_{on}}{T_{total}}$$
 $V_{eq} = DV_{max}$

DC Motor Controllers

H-Bridge: Controls direction of current that controls direction of rotation.

Clockwise Motion: Current flows into + terminal and out of - terminal.

Counterclockwise Motion: Current flows into - terminal and out of + terminal.

Application

How to Choose a Motor

- How fast do you need to go?
- Where is the motor used ?
- Size constraints ?
- What controller is available ?
- Power Constraints ?

Example H-Bridge Used in ENES 100

External Power: Most motors need more than 5V.

Green and Yellow Input: Input PWM into one of them. Direction depends on which one

Project: Motor Control

Let's Review:

Power : Separate power required for big components

Transistor : Can be used to regulate power flow

Potentiometer : Variable resistor that is adjusted by a knob

Analog : Arduino can read continuous input

Analog to Digital : Map function converts analog to digital

Transistor

- Electrical Switch
- One terminal impacts current flow between the other two terminals

MOSFET vs. BJT

MOSFET

- Voltage
 Dependent
- Gate control pin

BJT

- Current
 Dependent
- Base control pin

Potentiometers

These variable resistor dividers can change the center pin (wiper) voltage as you turn the knob!

A pot's written **value** is the resistance between the outer pins.

The ADC

- It converts voltage measurements into a 10-bit digital value between 0 and 1023
- The Arduino Uno has six ADCs at pins A0-A5
- The Arduino Uno does **not** have any DACs


```
void setup() {
    int ADCvalue = 0;
    // initialize serial communication at 9600 baud rate
    Serial.begin(9600);
}
void loop() {
    // Read the analog value from pin A0
    int ADCvalue = analogRead(A0);
    // print the value at serial monitor
    Serial.println(ADCvalue);
    delay(100); // delay in between reads for stability
}
```

Project: DC Motor Control

```
int motorCtl = 3;
  int pot = A0;
2
  void setup() {
4
   pinMode(motorCtl,OUTPUT);
5
    pinMode(pot, INPUT);
6
  void loop() {
9
    int potVal = analogRead(pot);
10
    int motorVal = map(potVal, 0, 1023, 0, 255);
11
   analogWrite(motorCtl,motorVal);
   delay(10);
13
14
```


Servo Motor Controls

Intro: Servo Motors

Servos : Special motors for fine control (usually with limited range

Rotation Control : Done via position sensors

Uses : Printers, Robotics, Cameras, etc.

More on Servos

Linear : Can rotate to specific angel and easier to code.

Continuous Rotation : Can rotate continuously but harder to code

3 Terminals : Power, GND, and signal.

Control of Servos

1	// Continuous Servo
2	<pre>#include <servo.h></servo.h></pre>
3	Servo myservo:
4	
5	int pos = 0;
6	
7	<pre>void setup() {</pre>
8	// The servo control wire is connected to Arduino D2 pin
9	myservo.attach(2);
10	// Servo is stationary.
11	myservo.write(90):
12	}
13	1
14	<pre>void loop() {</pre>
15	<pre>// Servo spins forward at full speed for 1 second.</pre>
16	myservo.write(180);
17	delav(1000);
18	<pre>// Servo is stationary for 1 second.</pre>
19	mvservo.write(90);
20	delav(1000):
21	<pre>// Servo spins in reverse at full speed for 1 second.</pre>
22	mvservo.write(0);
23	delav(1000):
24	<pre>// Servo is stationary for 1 second.</pre>
25	myservo.write(90):
26	delav(1000):
27	}
1	1

1	// Linear Servo
2	#include <servo.h></servo.h>
3	Servo servo:
4	
5	void setun()
6	s social ()
7	servo attach(2):
8	
0	L
10	void loop()
11	
12	// This variable is holding the target angle
10	int target = 00
10	Int target - 90
14	// The read function has a margin of error which is accounted
15	// for by the following if statement
16	if(!(servo.read() > target-5 && servo.read() < target+5)){
17	<pre>// This if and else statement rotate the motor in the proper</pre>
18	<pre>// direction depending if the targe angle is higher or lower</pre>
19	// than the current.
20	if(target > servo.read()){
21	for(int i = servo, read(); i < temp; i+= 2)
22	delay(50):
22	servo write(i):
20	
24	
20	Jetset
20	$\operatorname{For}(\operatorname{Int} I = \operatorname{servo.read}); I > \operatorname{temp}; I = 2)$
27	de Lay (50);
28	servo.write(1);
29	}
30	}
31	}
32	3

Application

Project: Servo Turn Control

Power : Low power required, arduino can provide it.

Servo Library : Has a variety of useful functions to control servo

Buttons : Arduino can read voltage from the digital pin that can detect if the button is pressed.

Reference: https://shorturl.at/dw8UG


```
1 #include <Servo.h>
 2
  int signalPin = 3;
 3
   int right = 4;
 4
   int left = 5;
 5
 6
 7
   Servo myServo;
   int angle = 0;
 8
 9
   void setup()
10
     pinMode(right, INPUT);
11
12
    pinMode(left,INPUT);
     pinMode(signalPin,OUTPUT);
13
14
     myServo.attach(signalPin);
15 }
16
```

```
void loop() {
17
     #getting button inputs
18
     if(digitalRead(right) == HIGH)
19
20
       angle++;
     else if(digitalRead(left) == HIGH)
21
       angle--;
22
23
     #keeping angle within valid bounds
24
25
     angle = constrain(angle,0,180);
26
     #writing angle to servo motor
27
     myServo.write(angle);
28
29
     delay(10);
31 }
```

Come visit the IES!

1115 AJC Open Lab 2:00- 7:00 PM Weekdays

Pleaes give us your feedback! <u>https://tinyurl.com/6eayw8r8</u>

