Soldering Workshop

Presented by Terrapin Works

^ENES100 Sign-in Only!

TERRAPIN WORKS Soldering Workshop

Students please sign in for the TW Workshop!

https://go.umd.edu/TWSP25

What is Terrapin Works?

Our **MISSION** is to empower the members of the community to reach their highest creative and technical potential by connecting them with cutting edge fabrication equipment, safe spaces, and knowledgeable personnel.

Our **VISION** is to accelerate the adoption of advanced manufacturing methods, engineering design processes, and experiential learning by the campus community.

Part 1: Background

What is Soldering?

Fusing non-ferrous metals by melting a soft filler metal (solder) between them.

What is Solder?

An alloy with a **relatively (400 - 800°F!)** low melting point that bonds well with non-ferrous metals.

We use unleaded solder.

Rosin-core solder has flux inside it to help solder flow.

The Soldering Iron

The Soldering Iron

Safety - Dress Code

- Long pants
- Close-toed shoes
- Tie back long hair
- Remove/tuck loose layers
- Safety glasses

Safety - Habits

- Turn off iron immediately when finished
- Return iron to stand when not in use
- Work on designated non-flammable surfaces
- Be patient and don't rush!

Part 2: Basics with solid core

Oxidation

The iron tip oxidizes **very quickly** while hot!

This builds up an **oxide** layer on the tip surface that blocks heat transfer and repels solder.

Removing Oxidation

The Sponge

Strengths:

 Removes light oxidation quickly

Weaknesses:

- Cools tip down
- Struggles with removing heavier oxidation and debris

Removing Oxidation

Brass Wool

Strengths:

 Removes excess solder and debris thoroughly

Weaknesses:

- Higher solder flick risk
- Takes longer

Removing Oxidation

Tip Tinner

Strengths:

• Removes the most stubborn oxidation

Weaknesses:

- Uses harsh chemicals
- Expensive

Tip Tinning

Coating the tip with melted solder improves heat transfer and slows oxidation.

Tip tinner is **NOT** the primary tool for tip tinning.

The Process

Cleaning and Tinning

Joint

Work Piece The entire assembly of wires to be soldered

The intended point of contact between wires

Helping Hands Hands that help B)

The Process

Mechanical Joining

Western Union Splice

Preventing Oxidation

Using Flux

Flux is a liquid applied to joints **before soldering** with three jobs:

- To remove oxidation from joint
- Seals joint from air during heating
- Eases solder flow ("wetting")

Heating The Joint

- Wet the tip by melting extra solder onto it
- Touch the iron and solder to **opposite sides** of the joint
- Heat from the center of the joint lengthwise

Keeping a Steady Hand

Good heat transfer demands steady contact between the iron and the joint, but many people's hands shake! What do we do??

Heating

Keeping a Steady Hand

"The Spider" (???)

Heating

Keeping a Steady Hand

"The Seesaw"

Solder Wicking

When the solder **melts** and **flows** into the joint.

This should happen after **1-5** seconds of heating.

Feed the melting solder wire into the joint until it stops wicking into new areas.

Enough is Enough

Only add enough solder to **coat the joint** - it's like tightly wrapping seran wrap around a churro!

Rule of thumb: Shiny = Good Connection!

Finishing Up

Once the joint is **saturated** with solder...

- Pull the solder away **BEFORE** the iron
- Replace your iron in the holder
- Wait a couple seconds to let the joint cool

If your solder gets stuck, don't panic! Touch your iron to the solder wire to melt it off and free it.

Temperature Regulation

Cold Joints

- Solder gets hot enough
- Joint does NOT get hot enough

Overheated Joints

- Heat transfers to rest of workpiece
- Joint gets too hot and quickly oxidizes

Part 3: Stranded Soldering

Stranded **Higher Resistivity** Flexible

Solid-core

Lower Resistivity Rigid

Mechanical Joining

Feathering

This is an **in-line** alternative to the twist.

It is stronger than twisting for **low-gauge wires**.

(Thru-hole tech) Part 4: THT Soldering

Circuit Boards

PCBs (printed circuit boards) are mass-produced to make repeatable, high-quality circuits.

Perfboards have a generic grid of through-holes that you can build your own circuit on and are handy for prototyping.

Passive Circuit Components

LEDs (Light Emitting Diodes) Emit light from current flowing in ONE direction (cathode to anode)

Affixing Components

Insert component leads into the circuit board's thru-holes.

Keep the component in while soldering by **bending one lead**.

THT Joint Anatomy

Holding The Board

Hold two **opposite corners** of the board with the helping hands.

Tip: Stabilize off the board /helping hands with your pinky!

Tip Geometry

Bad

Rad

Size

Chosen based on joint size and required precision.

Orientation

Maximize contact between the tip and ALL parts of the joint (the pad and the lead).

Heating: Timing

Because the joint is so small, it heats up **FAST!**

Heating the joint for too long causes **burning**.

Heat time < 5s!

Mistakes

Temperature regulation is challenging in THT!

- Joints heat **faster** and less controllably
- Demands precise tip placement for uniform transfer

The Perfect Joint

A perfect joint will look like a shiny, silver hershey kiss!

Tip: Drag excess solder up the lead when finishing!

Part 5: Wrapping Up

Check our our other introductory workshops!

OR come into open lab hours and start on an **intermediate project**!

Come visit the IES!

1115 AJC Open Lab 2:00- 7:00 PM Weekdays